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Abstract

The transport of the two-dimensional electron gas formed at an AIGaN/GaN heterostructure in the presence of strain
polarization fields is investigated. For this purpose, we develop a deterministic multigroup model to the Boltzmann trans-
port equations. The envelope wave functions for the confined electrons are calculated using a self-consistent Poisson—
Schrédinger solver. The electron gas degeneracy and hot phonons are included in our transport equations. Numerical
results are given for the dependence of macroscopic quantities on the electric field strength and on time and for the electron
and phonon distribution functions. We compare our results to those of Monte Carlo simulations and with experiments.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The application of GaN and related nitride semiconductors is of great interest in the fabrication of mod-
ern semiconductor devices, since these materials demonstrate an essential radiation hardness and operate at
high voltages and high temperatures [1]. In addition, nitride heterostructures feature the formation of high-
mobility two-dimensional electron gas (2DEG) channels due to their strong spontaneous and piezoelectric
polarization. The sheet electron density can exceed 10'> cm ™2 without intentional doping, especially at
AlGaN/GaN heterojunctions. Hence, the high electron density combined with high operational voltages
makes AlGaN/GaN channels attractive for high-power/high-frequency applications.
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In this paper, we propose multigroup model equations for directly solving the transport equations, which
govern the particle distribution at an AIGaN/GaN heterojunction. As shown recently [2], the longitudinal
optical (LO) phonon controlled energy dissipation and hot phonon effects as well as the degeneracy of the
2DEG play an important role for the particle transport in such structures. Therefore, the kinetic equations,
on which our multigroup model is based, are the two-dimensional Bloch-Boltzmann—Peierls (BBP) equa-
tions for electrons and polar optical phonons [3,4]. The quantitative comparisons of simulations and exper-
iments can only be satisfying, when the physics of the considered problem is regarded in detail. Hence, the
potential confining the electrons at the heterojunction is assembled in our simulations as the self-consistent
solution to the Poisson—Schrodinger system, fully based on material data for GaN and AlGaN.

So far, mainly Monte Carlo techniques have been used for investigating the carrier transport in hetero-
structure channels. However, the treatment of such problems by means of deterministic approaches consti-
tutes an interesting alternative to the usual procedure, since these methods provide noise-free results and
high efficiency when studying transient regimes, as it has been shown for the particle transport in polar
semiconductors [5,6]. To our knowledge, the application of deterministic solution techniques to the BBP
equations for the investigation of hot-phonon effects and degeneracy phenomena at AlIGaN/GaN hetero-
junctions has not been performed yet.

Our paper is organized as follows: Section 2 describes the physical model on which our calculations are
based. In Section 3, we present the 2D-BBP equations and summarize the transition rates, which are
applied for modeling the electron—phonon interactions. In Section 4, we introduce the multigroup model
equations used for investigating the transport of the 2DEG at an AlGaN/GaN heterostructure. Finally,
Section 5 deals with our numerical results. We present the self-consistent solution of the Poisson—Schro-
dinger system for the confining potential at the AlGaN/GaN heterojunction as well as the stationary-state
values and the transients of macroscopic quantities in comparison to Monte Carlo calculations and exper-
iments. Additionally, distribution functions for both the electrons and the LO phonons are displayed.

2. The physical model

We consider the transport of a 2DEG formed at a wurtzite, Ga-face AlGaN/GaN heterojunction consisting
of a 25 nm Aly ;5Gay gsIN undoped layer and a thick undoped GaN layer. The c-axis of the wurtzite lattice is
assumed to be perpendicular to the AlGaN/GaN interface. This allows us to describe the quantum states of the
electrons at the interface with one transverse effective mass m* and one set of energy subbands with the energy
eigenvalues ¢, and the normalized envelope wave functions ¢,. In contrast to the confined electrons, we treat
the phonons as three-dimensional particles. This is reasonable because of the small changes in the mechanical
parameters at the AlGaN/GaN heterojunction. In Fig. 1, we display the geometry used in our considerations.
The z-axis is chosen normal to the AlGaN/GaN interface at z = 0. Hence, electrons are confined in z-direction
and move semiclassically free in the (x,y) plane parallel to the heterojunction. This homogeneous transport is
driven by an electric field E| = (&,,0,0) in x-direction. We include scattering mechanisms for the electrons
caused by acoustic and longitudinal optical phonons in our transport model. Scattering by ionized impurities
is neglected since we deal with an undoped heterojunction, where the 2DEG is induced only by spontancous
and piezoelectric polarization charges. In the considered range of the electric field strength, electron scattering
into upper valleys is supposed to be negligible. Thus, we employ a one-valley multi-subband spherical, para-
bolic model band structure. Electron real space transfer and sharing effects are neglected in our calculations.

The electron energy E'(k)) in the vth energy subband and the electron wave vector k| are related by the
spherical, parabolic energy momentum rule [3]

Wk
2m*

E'(k) = +e, (1)



M. Galler, F. Schiirrer | Journal of Computational Physics 210 (2005) 519-534 521

A E,
Aly 15Gag gN e qx GaN

~ é o] 47 ,
I <

Fig. 1. Schematic illustration of the AlGaN/GaN heterojunction including the chosen coordinate systems for space and wave vectors
of electrons and phonons.

with k = [kj|. This implies that the modulus of the electron wave vector k| in the subband v is determined by
k|(E) = [2m"(E — &,)]"?@(E — ¢,)/h with the Heaviside function @ for the given energy E. The energy of
longitudinal optical (LO) phonons /i o is connected with the phonon wave vector q according to the
Einstein approximations Zwyo(q) = ZwLo [7].

3. 2D Bloch-Boltzmann—Peierls equations and 2D transition rates

The electron system is described by a set of one-particle distributions functions f"(kj,r), which gives the
probability to find an electron in the infinitesimal volume d2k|| around kj at time 7 in the vth subband. The evo-
lution equation for f*(k|,?) is the 2D electron Bloch-Boltzmann—Peierls equation. Expressing k| in polar coor-
dinates k| = (k| (E) cos 0, k| (E) sin 0) with the polar angle 0 between kjand Ej (cp. Fig. 1) and introducing the
new unknown function F'(E,0,t) =Z}(E)f"(E,0,t) with the electron density of states Z}(E) =
m*@(E — &,)/4n’i*, we obtain the energy dependent formulation of the 2D electron BBP equation. It reads

OF" 4 Op [a}(E,0)F"] 4 3y [as(E, 0)F"] = 6\[F"] + %,[F"], (2)
with
v _ e@@x v v - eéax .
ay(E,0) = o hik)(E) cos 0, ay(E,0) = W (E) sin 0. (3)

In this equation, two types of scattering mechanisms are included. The collision term
9 2n
6\ [F'] = Z /O dE’ A do'{ei (k| — kﬁ’)Fﬂ(kﬁ’)[zgl(E) — F'(k))]g (k| — kﬁ’)é(E’ — E + hoyo)
o

+er (K= KPR (23 (E) — F(6))lg (K = i) + 16(E' — E — hoyo)
— ey (K — K (DIZA(E) — P ]g (K — KS(E — E = hoovo)
— (k] — KIE () 25 (8") — P (k) [g (0] — K + 1J3(E' — £ + hoo)}, )

with the scattering function ¢; depending on the interaction mechanism and k| = k“l (E,0), k’H" = kﬁ (E,0)
couples the electron-LO phonon system. On the other hand, ,[F"] refers to an elastic scattering mechanism
with the scattering function ¢,

9 2n
Gl =X [T aE [ a0t kP aziE) - P )
I
~ (I}, ) () [Z4(E) — Y0 }3(E - E) 5
where k| = k| (E, 0) and ki’ = k{(E",0).
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Similarly as for electrons, we represent the wave vector q of LO phonons in cylindrical coordinates
q = (g, cos{,qsin{,q,), where g| is the modulus of gy, i.e., the projection of q onto the (x-y) plane, and
{ is the polar angle between q and E; as illustrated in Fig. 1. Here, we introduce the 2D LO
phonon distribution g(qy,¢), which is obtained from the 3D distribution function by averaging it with
respect to ¢g.. The dynamics of LO phonons is governed by a phonon BBP equation similar to that
of the electrons. Defining G(q.,(,t) = Zro(q)Pg(q.(,1) with the LO phonon density of states Zio(q) =
q/4n* leads to

0,G = 2,[G] + 2,|G]. (6)

Electron—phonon interaction is described by the collision term

206)= % [ dE [ d0(er. K~ a)F ) - 70 - )]6(a)) + ZiolgD(E ~ E -+ howo)

v, i

- Cl(kﬁzkﬁ + ‘lH)FV(k\V\)[l —f“(kﬁ + qH)][G(qH)]é(E' —E — hoyo)}. (7)
The phonon—phonon interaction term %, is considered according to the relaxation time approximation

DG = _L[G(qu) - ZLO(qH)gBE]v (8)
TLo
with the Bose-FEinstein distribution ggg = [exp(hwr olkgTL) — 1]_1 and the relaxation time 7y .
Concerning the transition rates for electron—phonon interactions, we apply the following. The electrons
interact with acoustic phonons through the deformation potential and the electrostatic polarization asso-
ciated with atomic vibrations. In wurtzite structures, the deformation potential in the central valley is a
diagonal second-rank tensor D. The value of D.. is in general different from D, = D,,. However, experi-
mental data are not available for these quantities. Therefore, we assume equal diagonal elements and treat
the deformation potential tensor as a scalar quantity [8]. This implies that the scattering function ¢, opp for
acoustic deformation potential scattering reads in the elastic approximation as

- 2nDikBTL 1

4 ?
c2.app (K, ki) Tt W %)
with v, = (1,02)"* and
1 00
7= | _da@rleer (10)
uv —00

The strength of the piezoelectric scattering is determined by the dimensionless electromechanical cou-
pling coefficient K2, which contains contributions of both the longitudinal (LA) and the transverse (TA)
acoustic phonons. Following [9], we obtain

2 2
Kz — <eLA> =+ <eTA> , (1 1)
Kst€0CLA  KstéoCTA

where ¢; o and cra are the angular averages of the elastic constants describing the propagation of LA and
TA waves and
1
<€iA> = ﬁ [8(2615 + 831)2 —+ 12(2@15 + 631)633 =+ 15853], (123)

1
<€—21~A> = m[6(€33 — e15 — 631)2 —+ 16(633 — e15 — 631)815 + 486%5] (12b)
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This implies that the scattering function ¢, pz for screened piezoelectric scattering reads
N 27'CkBTL€2 K2 5!”’ 1— 5!“,

crpz(k),kl') = ———— + , 13
D W |(K — k]| +4q)° |k — K| (12
with the screening parameter,
me

Dmicseoh

derived from the matrix-random phase approximation [10].

Electron-LO phonon coupling in wurtzite crystals is different from the well-known cubic case. The elec-
trons interact with both the longitudinal optical (LO) and the transverse optical (TO) modes rather than
with a single LO mode as in cubic lattices. However, it has been shown that the scattering rate for TO scat-
tering is more than two orders of magnitude smaller than that for LO scattering. Moreover, the LO scat-
tering rate in the cubic approximation is valid regardless of the chosen point in the Brillouin zone [11].
Hence, we use the cubic approximation and the formulation of Price [12] for the transition rates, leading
to the scattering function ¢; pop for screened polar optical scattering

_ ew (1 1
C1LPOP(¢)) = EP T K_bt

with

0,4 (1 = 6)(% — Bugy)
(q)+ W wad)qy +q,)° @+ Wt = Bugydi|’

<ﬁ ) ~[Ca e a6 (16)

4. Multigroup model equations

For formulating multigroup equations to the 2D-BBP equations (2) and (6), we introduce the discreti-
zation of the independent variables E, 0, ¢ and { according to

h
Enp = +iAE, i=0,1,....N, AE="0 n €N, (17a)
HAmul
1
Ei:gl+ |:l—§:|AE‘7 i:1,2,...,N, (17b)
. . 2n
0j+]/2 :]A(), ]:O,l,7M, AO:M’ (17(:)
1
. Dmax
qx+1/2:]Aq7 x:0717"'7Ra Aq:Ta (176)
2n
(erI/ZZyACa y:()ala"'>S7 AC:? (17f)

Here, E.x = NAE and ¢,,,, must be chosen in a way that F'(E,.y) is negligible for all v, 6 and ¢ and G(¢max)
is undisturbed by the electron—phonon interaction for all { and ¢. The distribution functions of electrons
and phonons are approximated as the finite sums
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Z(E)f(E,0,1) = XN; in;}(t)é(E — E)8(0—0)), (18a)
Zy(E)1 - 1(E,0,0)] = Z jﬁﬂ; — mOVEEO — 0y), (18)
Zon(q))g(qy (1) = XR; yzs;rxy(t)iﬁ(m)iﬁ(i), (18¢c)
Zon(qy)[g(q, &) + 1] = i: Vi:[rxy(l) + 121434 (0), (18d)

with N x M coefficients nj; for each electron subband and R x S phonon coefficients ry,. We remark that

y
ny; =0 for E; <e¢, for all 0 and 7. In ansatz (18), we use

AE™Y, if E€[Ei_1p,Eii1p),
JH(E) = L BBy (19)
0, if E¢&I[Ei12,Ei1)2],
and corresponding expressions for Z/(¢) and 24(). Additionally, we apply
v m*
;= 2R [O(Eiv1)2 — &)Ei12 — O(Ei_1)2 — &) Ei_1 0] AD, (20a)
1
17, = ) [q)zc+1/2 - ‘]iq/z}AC (20b)

Forming moments of (18) reveals that the macroscopic quantities electron density (n"), drift velocity (v")
in direction of the electric field and mean energy (E") in the vth subband as well as the phonon density {»n")
are simply given by

) =23 o), (212)

(0(0) = i D D k() eos 0 (1), (21b)
v _ 2 e y

F O = gy 2 L0, 210

P(0) =2 Y rale). C1d)

The evolution equations for the coefficients #;; and ry, are obtained by inserting (18) into the 2D-BBP
equations (2) and (6) and integrating the result over the cells C;=[E;_1/2,E;+12] X [0;— 1/2,0;+1/2] and
Dy = [qx—1/2:9x + 121 X [{y — 12,{; + 1,2], respectively. This procedure yields

al’l: , v v vi— v v v v]—
atj + @} (B2, 0)) "] = @l (Eioio, 0)) "] + @y (Ei, 0512) 01" — ab(Ei, 0i112) [m]}]

=%, [nl‘j] + %, [n}j], (22)
Oryy

ot

= 291[rxy] + 92[rxy]v
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when applying an upwind scheme with linear approximations for the fluxes at the boundaries of Cj
with

Eyv

n!, + -4 if a{(E;,0;) >0,
e = 1, 0)) (23a)
n, =50 a@(EL0)) <0,
Eyv
n, — 4 if a}(E;,0;) <0
- 2 1\Ei, U )
' =4" T (23b)
n o+ S if a‘l’(E[7 0;) >0,
and sf-j-"' = MM(n},,; —nj;,n}; — n;, ;). The MinMod slope limiter [13] is defined by
0, if ab <0,
M(a,b) = ¢ max(a,b), if a <0, (24)
min(a,b), if a>0.
Similar expressions are used for determining [, ;']" and [nz”]_
The electron collision terms Cy[n};] and C[n;] read
R S N M
Gl =30 3030 0D ST ) Hially = il (S50 alLy = i + 13)
" xX= y= a= b=1
- <S;/i>l;b xy>+n”[lf:b - nﬂb]rxy <S:,j;bxy> ”z‘j}[lgb —ny] [rey + 15}7]}a (25a)

ZZZM& (1) = ] = (Cy b1y — ]}, (25b)

with the collision coefficients

ci[E (k) — k)]
Nl dEdo dE'df —————~0(E — E; IE(ENG(0 — 0,)0(0 — 0,)23(KY — k!
(i) = [ dBQ0 [ QB A0S T 0 — B0 - 0)5(0 ~ 020 K]
x 2 +(Facos|ki’ — \7 Je. - (ki" — k))|O(E' — E F hono), (26a)
(Clp i) = / dEdH/ dE'd0'c, k“‘,k“”)é(E — E)AE(ENS(0 - 0,)8(0 — 0,)0(E' — E). (26b)
In addition, the phonon collision terms D[r,,] and D-[r,,] are given by
N M N M
Dilral =D 3D D>l = Al (S ) I+ 10] = (87 0) T (27)
vu i=1 j=1 a=1 b=l
1
Dory) = i [1§ygBE — Iyl (28)
LO

For computing the screening parameter for polar optical and piezoelectric scattering, it is necessary to
determine the electron distribution functions at the bottoms of the subbands. These quantities f*(0) are
approximated via

M n,

)= mm=, (29)
=1 I

min ¥/

where 1! . is the energy index so that ¢, € [E,\ i Ep 4 /2]

min min
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5. Numerical results

The simulations shown in this section are performed for the lattice temperature 77 = 300 K and the sheet
electron density n = 5 x 10'> cm 2 by taking into account the four lowest energy subbands. Concerning the
parameters used in our numerical scheme, we set N = 60, M = 24, n;,,,; = 10. This implies that E,,,,, = 0.55 eV.
Additionally, we use R = 50 and S = 24 with the maximum wave vector ¢mayx = 3.6 x 10° m~!. Initial data for
the coeflicients n}; and r,, are obtained by integrating the Fermi-Dirac distribution and the Bose-Einstein dis-
tribution over the cells C;;and D,,, respectively. The stationary state is assumed to be reached approximately
at 10 ps after the onset of the electric field. All of the required constants are found in Table 1.

5.1. Confining potential

We solve the coupled system of the effective mass Schrodinger and the Poisson equations self-consis-
tently for computing the confining potential and the energy subband structures needed for our transport
equations. Therefore, we proceed as follows [3]. In a 2DEG confined in a quantum well at a heterojunction,
the electrons move in the potential

V(z) = —e¥(z) + AE.O(z — zy). (30)
Here, e is the elementary charge, ¥(z) denotes the electrostatic potential depending on the position z normal

to the AlIGaN/GaN interface at zo = 0 nm (cp. Fig. 1). The symbol AE, labels the interface barrier. The elec-
trostatic potential is related to the charge distribution by the Poisson equation

Table 1
Material parameter for the 2DEG simulation
Quantity Symbol Unit GaN Aly15Gag gsN
Electron effective mass® m* 0.22 m,
Static dielectric constant® Kt 8.9
HF dielectric constant® Khf 5.23
Lattice constants® a nm 0.3189 0.3177
c nm 5.185
Acoustic deformation potential® Dy eV 8.3
Longitudinal sound velocity® v ms! 6560
Transverse sound velocity® v ms~! 2680
Mass density® P kgm™3 6150
Longitudinal optical phonon energy® horo meV 91.2
Transverse optical phonon energy® horto meV 69.5
Piezoelectric constants® es; Cm? —0.49 —0.506
e Cm™? 0.73 0.839
ers Cm™? -0.3
Spontaneous polarization® Py, Cm™2 —0.029 —0.0368
Elastic constants® c13 GPa 103.0 103.75
€33 GPa 405.0 400.2
Averaged elastic constants® CLA GPa 265
CTA GPa 44.2
Phonon relaxation time' Lo ps 1
Interface barrier’ AE, eV 0.6
* Ref. [14].
® Ref. [15].
¢ Ref. [16].
4 Ref. [11].
¢ Ref. [17].

f Ref. [2].
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d [Ks&z) di} () = — < Ni(2) - n(a), (31)

where g is the static dielectric constant, k, is the permittivity of free space, N{(z) stands for the space
dependent fixed charge given by the structure of the heterojunction, and n(z) denotes the charge distribution
of the quantum confined electrons. This quantity can be evaluated via

nz)=Y" m(2ksTe | [1 +exp (Ef — 8)] 0,2, (32)

Th? kgTy

with the lattice temperature 7 and the Fermi energy Ef for parabolic energy subbands (1) and Fermi sta-
tistics taking into account degeneracy effects of the electron gas. The charge of the two-dimensional con-
fined electrons depends on the subband envelope functions and the eigenenergies. These quantities are
the solutions of the one-dimensional effective mass Schrodinger equation

{—%2 ] relee a6, (33)

We apply an iteration procedure to solve (31) and (33). To begin with, we insert a trial 2DEG charge
distribution n(z) into the Poisson equation (31). This leads to a confining potential V(z) via (30), which
is used in the Schrodinger equation (33) to determine eigenenergies and wave functions. The 2DEG density
is corrected with the help of these quantities according to (32). All these calculations are performed by using
standard numerical methods. Subsequent iterations lead to the final self-consistent solution for ¥{(z), ¢, and
¢, with the required accuracy.

As shown in [16], spontaneous and piezoelectric polarization play an important role in the quantum-
confinement of electrons at AlGaN/GaN interfaces. Hence, we take into account the polarization
charge

- a(0) — a(0.15) C13(0.15)
G—Psp(0~15)*Psp(0)+2W C33(0.15)

for the fixed charge N;in (31). In the considered configuration, ¢ is positive and free electrons tend to com-
pensate for it. Following [2], we use a value for the interface band offset AE, twice as high as found in the
literature [16]. This prevents electrons from entering the AlGaN layer considerably, and we can neglect elec-
tron sharing effects. This assumption is justified at not too high electric fields.

Fig. 2 displays the resulting self-consistent solution for the confining potential (z) and the first four
eigenenergies and envelope wave functions, which are used in our transport simulations. Moreover, this fig-
ure shows the self-consistent solution for the 2DEG density. The scattering probabilities in our transport
model are calculated for these equilibrium self-consistent wave functions. For saving computational time,
no field-induced modulations on the ¢, and ¢, are taken into account. Electron scattering into higher valleys
is neglected, hence we deal with a spherical and parabolic one-valley many-subband model. These assump-
tions are valid for the range of electric field strengths under consideration.

631(2) - 633(2) (34)

5.2. Macroscopic quantities

In Fig. 3, we show the results for the electron velocity-field characteristics at an Al,Ga;_ N/GaN het-
erojunction at 300 K, simulated by means of our multigroup equations. Three cases are considered: includ-
ing the degeneracy of the 2DEG but neglecting hot phonon effects, neglecting the degeneracy of the electron
gas and taking into account hot phonon effects, and including both the degeneracy of the 2DEG and hot
phonons into the transport model. The simulations show that the electron gas degeneracy as well as the hot
phonon effects influence the electron drift velocity in the investigated range of the electric field. Hence, both
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Fig. 2. The potential profile (solid line), the first four wave functions (dashed lines) and the profile of the 2DEG density (filled) versus

position. Wave functions and electron density are plotted in arbitrary units; the zero of each wave function is the corresponding
eigenenergy. The dashed-dotted line refers to the Fermi energy.

Velocity (1 o* ms_1]
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Electric field [kVem™']

Fig. 3. The electron velocity-field characteristics for the Al,Ga, _,N/GaN heterojunction at 300 K. Lines refer to results from the
multigroup method and symbols to MC calculations [2]. (- - -, X): degenerated gas, equilibrium phonons; (———, +): non-degenerated
gas, hot phonons; (—, O): degenerated gas, hot phonons; *: experiment [18].

effects must be taken into account for good agreement with experimental data [18]. Moreover, we observe
excellent agreement of our results with those of MC calculations [2].

When degeneracy is neglected, the drift velocity exceeds that obtained by the full model. This can be
explained in terms of the angular dependence of the final electron states after phonon emission. Small angle
scattering by phonon emission processes is the dominant scattering mechanism for electrons with wave vec-
tors in direction of the drift velocity, if the degeneracy is neglected. When the Pauli principle is applied, this
small angle scattering rate reduces dramatically, since the corresponding final states are occupied. Conse-
quently, the probability for large angle scattering is enhanced, and electrons are forced to scatter to final
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states in opposite direction of the drift velocity. This implies a strong negative contribution to the drift
velocity. Since the mean electron energy increases as the electric field increases, electron gas degeneracy
effects decrease with the rising electric field. Hence, the drift velocity curves calculated with and without
degeneracy tend to merge at high fields [2].

When the hot phonon effects are not taken into account, the calculated drift velocity exceeds consider-
ably the experimental data and the results of the simulation for the complete model. Hence, hot phonon
effects can be regarded as quite important in nitride heterostructures. Due to the enhanced phonon occu-
pation number (cp. Fig. 10), hot phonons support a stronger scattering of electrons. The scattering caused
by the optical phonon absorption increases because of the phonon reabsorption; the scattering caused by
phonon emission increases due to the stimulated emission. This explains the essential reduction in the drift
velocity when hot phonons are taken into account. The stronger the electric field, the more pronounced are
the hot phonon effects [2].

Finally, we note a deviation of the calculated drift velocity from the experimental data in Fig. 3 for fields
higher than 10 kV cm ™. It is known that electron sharing influences the experimental results on the drift
velocity at stronger electric fields [18]. The sharing of electrons by the Al,Ga;_ N and the GaN layer
has not been taken into account in this simulation, which leads to the higher calculated drift velocity in
comparison to the experimentally determined one for high fields.

In Figs. 4-6, we depict the temporal evolution of the densities, the velocities and the mean energies of
electrons confined at an Al,Ga; _ N/GaN heterojunction for the three lowest subbands in response to
the onset of an electric field pulse of the strength & = 10 kV cm™'. Solid lines refer to calculations taking
into account hot phonons; the dashed curves are obtained by assuming equilibrium phonons. In both sim-
ulations, degeneracy of the 2DEG is regarded. For times 7 < 0.2 ps, the results of the two considered cases
almost agree, while the increasing phonon density (cp. Fig. 10) leads to significant differences in the mac-
roscopic quantities for later times in correspondence with the stationary state values displayed in Fig. 3.

The most interesting result of these simulations is the behavior of the drift velocity with time. We observe
a velocity overshoot as it is expected for the relatively high electric field. In the case of the equilibrium
phonon calculation, this velocity overshoot is caused by the ballistic transport of electrons right after
the onset of the electric field, when the distribution function is shifted by the electric field but hardly altered
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Fig. 4. Temporal evolution of the electron densities in the three lowest subbands of a 2DEG formed at an AIGaN/GaN heterojunction
after the onset of the electric field with |Ej| = 10 kV em™!. Solid lines: hot phonons; dashed lines: equilibrium phonons.
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Fig. 5. Temporal evolution of the drift velocities in the three lowest subbands of a 2DEG formed at an AlIGaN/GaN heterojunction
after the onset of the electric field with [Ej| = 10 kV cm . Solid lines: hot phonons; dashed lines: equilibrium phonons.
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Fig. 6. Temporal evolution of the mean energies in the three lowest subbands of a 2DEG formed at an AlIGaN/GaN heterojunction
after the onset of the electric field with [Ej| = 10 kV em™ L. Solid lines: hot phonons; dashed lines: equilibrium phonons.

by scattering events. This ballistic motion contributes to the velocity overshoot in the hot phonon simula-
tion as well; however, the dominant reason for the decrease of the velocity with increasing time is the
enhanced phonon scattering caused by the non-equilibrium phonons. Their effect is strong enough to cause
a velocity overshoot, not only in the lowest subband as it is the case in the equilibrium phonon simulation,
but also for the higher ones. Moreover, we note that the maximum velocity achieved is much lower in the
case of taking into account non-equilibrium phonons. Hence, simulations aimed at designing GaN-based
heterostructure semiconductor devices, which take advantage of velocity overshoots for reducing switching
times, must include hot phonon effects for not overestimating the achievable performance of such devices.
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5.3. Distribution functions

One of the advantages of handling the Bloch—Boltzmann—Peierls equations with the help of deterministic
solution methods is the availability of the particle distribution functions in noise-free resolution. Moreover,
the consideration of two-dimensional transport problems allows the illustration of the whole information
on the distribution function without an averaging procedure. Hence, we regard the following figures as
quite illustrative.

Figs. 7-10 depict the stationary-state electron distribution functions for the three lowest energy bands
and the associated longitudinal optical phonon distribution function at the Al,Ga; _ ,N/GaN heterojunc-

{

9%
koo
| “W:

—
7
=

[1 77

z>

Vav.

=

/
AN
X

o4
77
777

V7
7

07

‘ @’&
W
I

7 Z
/ 77,

L7
V4
L7

7
7

7
A 7

i

L7775
[[]777
ll"’

1]

o
L
1
1177
[1]

7
il
il

1

o
a
Il

1

] 9 1
k [10°m™] — 4 k, [10°m™]

Fig. 7. Stationary-state electron distribution function in the first subband f' versus the wave vector k; at an AlGaN/GaN
heterojunction under the influence of the electric field [Ej| = 10 kV em™!,
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Fig. 8. Stationary-state electron distribution function in the second subband f2 versus the wave vector k| at an AlGaN/GaN
heterojunction under the influence of the electric field |E|| = 10 kV cm™!
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Fig. 9. Stationary-state electron distribution function in the third subband f* versus the wave vector k| at an AlGaN/GaN
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heterojunction under the influence of the electric field [Ej| = 10 kV cm
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Fig. 10. Stationary-state longitudinal optical phonon distribution function g versus the wave vector q at an AlGaN/GaN
heterojunction under the influence of the electric field [Ej| = 10 kV em L,

tion. In this simulation, the electric field is set to & = 10 kV cm~!. The distribution functions ;and g, in
the points kj; = k| (£;)(cos ;,sin0;) and q,, = g,(cos{,,sin{,) are approximated via f; = n;;©@(E; — &)/1};
and g, =7y, /17

In Figs. 7-9, we observe that the electron distribution functions can be seen as shifted Fermi—Dirac dis-
tributions with some abrupt changes in their falling with rising energies. This finer structure is related to the
onset of possible intersubband scattering. In contrast to bulk polar semiconductors with their large differ-
ences in the effective masses of I'-valley and L-valley electrons, the density of states is the same for all sub-

bands for 2DEGs. This results in the less pronounced decline in the distribution function of a subband
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when starting to overlap with another one in comparison to the bulk case when intervalley scattering begins
to take place [5].

In Fig. 10, we see the reason for the strong influence of the hot phonon effect on the electron drift veloc-
ity. The phonon distribution function is significantly enhanced in comparison to its equilibrium Bose-
Einstein value (equals here the value in the undisturbed regions for large qj). Another interesting feature
of g is its behavior for very small ;. In bulk semiconductors, there exists a value g, > 0 so that scattering
by phonons with |q| < ¢mi, is prohibited because of the conservation of momentum and energy. In confined
systems, ¢, tends to zero, since the constant optical phonon energy is converted into potential energy of
electrons by intersubband scattering processes. Thus, the phonon distribution function does not exhibit an
undisturbed region centered at q = 0 in the case of two-dimensional transport but only a small inversion as
it is observable in Fig. 10.

6. Conclusion

We present multigroup model equations for directly solving the two-dimensional Bloch-Boltzmann—
Peierls equations, which govern the transport of electrons and LO phonons at heterojunctions. With the
help of this deterministic approach, we investigate the two-dimensional electron transport in AlGaN/
GaN heterostructures in presence of strain polarization fields. The envelope wave functions for the confined
electrons are calculated using a self-consistent Poisson—Schrédinger solver. The electron gas degeneracy
and hot phonons are included in our transport equations. Numerical results are given for the field and time
dependence of macroscopic quantities and for the electron and the phonon distribution functions. The
obtained results exhibit good agreement with those of Monte Carlo simulations.
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